6 research outputs found

    Investment under ambiguity with the best and worst in mind

    Get PDF
    Recent literature on optimal investment has stressed the difference between the impact of risk and the impact of ambiguity - also called Knightian uncertainty - on investors' decisions. In this paper, we show that a decision maker's attitude towards ambiguity is similarly crucial for investment decisions. We capture the investor's individual ambiguity attitude by applying alpha-MEU preferences to a standard investment problem. We show that the presence of ambiguity often leads to an increase in the subjective project value, and entrepreneurs are more eager to invest. Thereby, our investment model helps to explain differences in investment behavior in situations which are objectively identical

    How brains make decisions

    Full text link
    This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum Decision Theory (QDT) that we have developed in a series of publications since 2008. We formulate a general mathematical scheme of how decisions are taken, using the point of view of psychological and cognitive sciences, without touching physiological aspects. The basic principles of how intelligence acts are discussed. The human brain processes involved in decisions are argued to be principally different from straightforward computer operations. The difference lies in the conscious-subconscious duality of the decision making process and the role of emotions that compete with utility optimization. The most general approach for characterizing the process of decision making, taking into account the conscious-subconscious duality, uses the framework of functional analysis in Hilbert spaces, similarly to that used in the quantum theory of measurements. This does not imply that the brain is a quantum system, but just allows for the simplest and most general extension of classical decision theory. The resulting theory of quantum decision making, based on the rules of quantum measurements, solves all paradoxes of classical decision making, allowing for quantitative predictions that are in excellent agreement with experiments. Finally, we provide a novel application by comparing the predictions of QDT with experiments on the prisoner dilemma game. The developed theory can serve as a guide for creating artificial intelligence acting by quantum rules.Comment: Latex file, 20 pages, 3 figure

    Unforeseen contingencies

    No full text
    Also available via the InternetSIGLEAvailable from British Library Document Supply Centre-DSC:3597.9512(no 3271) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Unforeseen contingencies

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:3597.4435(02/431) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore